
Development of the  Fourie r  Trans form 

The Fourier series  is  an extremely useful s ignal representation. 

Unfortunately, this  s ignal representation can only be  used for periodic 

s ignals, s ince  a  Fourier series  is  inherently periodic. 
 

Many s ignals  are  not periodic, however. 
 

Rather than abandoning Fourier series, one  might wonder if we can 

somehow use  Fourier series  to develop a  representation that can be  

applied to aperiodic s ignals. 
 

By viewing an aperiodic s ignal as  the  limiting case  of a  periodic s ignal with 

period T where  T → ∞, we can use  the  Fourier series  to develop a  more  

general s ignal representation that can be  used for both aperiodic and 

periodic s ignals. 
 

This  more  general s ignal representation is  called the  Fourier transform. 
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CT Fourie r  Trans form (CTFT) The (CT) Four ier  transform of the  s ignal x, denoted F { x}  or X , is  given 

by 

X (ω ) = 
{  ∞ 

−∞  
 

The preceding equation is  sometimes  referred to as  Four ier  transform 

analysis equation (or forward Four ier  transform equation ).  

The  inverse Four ier  transform of X , denoted F −1{ X }  or x, is  given by 

x(t)e− jωt dt. 

x(t ) =  
1 

 { 

∞ 
2π −∞  

X (ω)e jωt dω. 

The preceding equation is  sometimes referred to as  the  Four ier  transform 

synthesis equation (or inverse Four ier  transform equation). As  a  matter 

of notation, to denote  that a  s ignal x has  the  Fourier transform X , we write  

x(t) ←→ X (ω ).  

A signal x and its  Fourier transform X constitute  what is  called a  Four ier  

transform pair . 

CTFT 
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Section 5.2 
 

 
 
 

Convergence  Properties  o f the  Fourier Trans form 
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Convergence  of the  Fourie r  Trans form 

Consider an arbitrary s ignal x. 
 

The s ignal x has  the  Fourier transform representation x̃ given by 

x̃(t ) =  
1 

 { 

∞ 
2π −∞  

X (ω)e jωt dω, where  X (ω ) =  

 { ∞  
 

 
 

−∞  
x(t)e− jωt dt. 

•Now, we need to concern ourselves  with the  convergence  properties  

of this  representation. 

• In other words, we want to know when x̃ is  a  valid representation of x. 

Since  the  Fourier transform is  essentia lly derived from Fourier series, 

the  

• convergence  properties  of the  Fourier transform are  closely re la ted to the  

• convergence  properties  of Fourier series. 
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Convergence  of the  Fourie r  Trans form: Continuous  Case  

If a  s ignal x is  continuous and absolutely integrable (i.e .,  
{ ∞  

−∞ | x(t)| dt <  ∞) and the  Fourier transform X of x is  absolutely integrable  

(i.e., 
{  ∞ |X (ω)| dω <  ∞), then the  Fourier transform representation of x −∞  

converges  pointwise (i.e., x(t ) =  1 
2π  

{
−∞ 

 {  ∞ ∞ 
−∞  x(t)e− jωt dt e jωt dω for a ll t ).  

  

Since, in practice, we often encounter s ignals  with discontinuities  (e.g., a  

rectangular pulse), the  above result is  sometimes  of limited value. 
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Convergence  of the  Fourie r  Trans form: Finite -Energy 

Case  If a  s ignal x is  of finite energy (i.e ., 
{ ∞  

−∞  |x(t)|2 dt <  ∞), then its  Fourier 

transform representation converges  in the  MSE sense. 

In other words, if x is  of finite  energy, then the  energy E in the  difference  

s ignal x̃ − x is  zero; that is, 

E  = 
{  ∞ 

−∞  
|x̃(t) − x(t)|2 dt =  0.  

Since, in s ituations  of practice  interes t, the  finite-energy condition in the  

above theorem is  often satis fied, the  theorem is  frequently applicable. 
 

It is  important to note, however, that the  condition E =  0 does  not 

necessarily imply x̃(t) =  x(t) for a ll t. 
 

Thus, the  above convergence  result does  not provide  much useful 

information regarding the  value  of x̃(t) at specific values  of t. 
 

Consequently, the  above theorem is  typically most useful for s imply 

determining if the  Fourier transform representation converges. 
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Convergence  of the  Fourie r  Trans form: Dirichle t  Case  The Dir ichlet conditions for the  s ignal x are  as  follows: 
1 The s igna l x is  absolutely integrable (i.e ., 

{  ∞ |x(t)| dt  < ∞).  −∞  
2 On any finite  inte rva l, x has  a  finite  number of maxima and minima (i.e ., x is  

of bounded variation). 

On any finite  inte rva l, x has  a  finite number of discontinuities and each 

discontinuity is  itse lf finite. 

3 

If a  s ignal x satis fies  the  Dirichlet conditions, then: 
1 The Fourie r transform representa tion x̃ converges  pointwise  eve rywhere  to 

x, except a t the  points  of discontinuity of x. 

At each point t =  ta of discontinuity, the  Fourie r transform representa tion x̃ 

conve rges  to 

2 

x̃(ta) =  1  x(t+ ) +  x(t −)
  

,  
2 a a 

where  x(ta
−) and x(t+ ) denote  the  va lues  of the  s igna l x on the  le ft- and a 

right-hand s ides  of the  discontinuity, re spective ly. 

Since  most s ignals  tend to satis fy the  Dirichlet conditions  and the  above 

convergence  result specifies  the  value  of the  Fourier transform 

representation at every point, this  result is  often very useful in practic e. 

Version: 2016-01-25 



Section 5.3 
 

 
 
 

Properties  of the  Fourier Trans form 
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Properties  of the  (CT) Fourie r  Trans form 
Property Time  Domain Frequency Domain 

Linearity 

Time-Domain Shifting Frequency-

Domain Shifting Time/Frequency-

Domain Scaling Conjugation 
 

Duality 

Time-Domain Convolution 

Frequency-Domain Convolution 

Time-Domain Differentia tion 

Frequency-Domain Differentia tion 

a1x1(t) +  a2x2(t) 

x(t − t 0)  

e jω0t x(t) 

x(at) 
 

x∗(t) 
 

X (t) 

x1 ∗ x2(t) 

x1(t)x2(t) 

a1X1(ω) +  a2X2(ω) 

e− jωt0 X (ω) 

X (ω − ω0) 

1  X 
  

ω 
  

|a| a 

X ∗(−ω) 

2πx(−ω) 

X1(ω)X2(ω) 

1 X1 ∗ X2(ω) 
2π 

d x(t) dt jωX (ω) 

tx(t) j d  X (ω) dω 

Time-Domain Integra tion 
{ t 

   ∞− jω   x(τ)dτ 1  X (ω) +  πX (0)δ(ω) 

Property 

Parseval’s  Rela tion 
{ ∞  
−∞  |x(t)|2 dt  =  1 

2π  

{
−∞  
∞ |X (ω)| dω 2 
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(CT) Fourie r  Trans form Pa irs  

7 
 

8 
 

9 

10 e−at u(t), Re{ a}  >  0 
 

11 tn−1e−at u(t), Re{ a}  >  0 

sin ω0t 
 

rect(t/ T  )  
|B| 

π [δ(ω − ω0) − δ(ω +  ω 0)]  
j 

|T | sinc(T ω/ 2)  
 

rect 2B 
1 

π 
sinc Bt ω 

a+  jω 
(n− 1)!  

(a+  jω)n 

12 tri(t/ T  )  |T | sinc2(T ω/ 4)  
   2  

Version: 2016-01-25 

Pair x(t) X )ω) 

1 δ(t) 1 

2 u(t) πδ)ω) + 1 

jω 

3 1 2πδ)ω) 

4 sgn(t) 2 
jω 

5 e jω0t 2πδ(ω − ω 0)  

6 cos ω0t π[δ(ω − ω0) + δ(ω + ω 0)]  



Linearity 

If x1(t) ←→ X1(ω) and x2(t) ←→ X2(ω), then 
 
 

a1x1(t) +  a2x2(t) ←→ a1X1(ω) +  a2X2(ω ),  
 
 

where  a1  and a2 are  arbitrary complex constants. 
 

This  is  known as  the  linear ity proper ty of the  Fourier transform. 

CTFT CTFT 

CTFT 
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Trans la t ion (Time-Domain Shifting) 

If x(t) ←→ X (ω), then 
CTFT 

x(t − t0) ←→ e− jωt0 X (ω), CTFT 

where  t0 is  an arbitrary real constant. 

This  is  known as  the  translation (or  time-domain shifting) proper ty of 

the  Fourier transform. 
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Modula t ion (Frequency-Domain Shifting) 

If x(t) ←→ X (ω), then 
CTFT 

e jω0t x(t) ←→ X (ω − ω ), CTFT 

0 

where  ω0  is  an arbitrary real constant. 
 

This  is  known as  the  modulation (or  frequency-domain shifting) 

proper ty of the  Fourier transform. 
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Dila t ion (Time-  and Frequency-Domain Sca ling) 

If x(t) ←→ X (ω), then 
CTFT 

x(at ) ←→  CTFT 1 

|a| a 
X 

(    \  

, 

ω 

where  a is  an arbitrary nonzero real constant. 

This  is  known as  the  dilation (or  time/frequency-scaling) proper ty of 

the  Fourier transform. 
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Conjuga t ion 

If x(t) ←→ X (ω), then 
CTFT 

x∗(t) ←→ X ∗(−ω ).  
CTFT 

This  is  known as  the  conjugation proper ty of the  Fourier transform. 
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